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Deficits in empathy enhance conflicts and human suffering. Thus,
it is crucial to understand how empathy can be learned and how
learning experiences shape empathy-related processes in the human
brain. As a model of empathy deficits, we used the well-established
suppression of empathy-related brain responses for the suffering of
out-groups and tested whether and how out-group empathy is
boosted by a learning intervention. During this intervention, partici-
pants received costly help equally often from an out-group member
(experimental group) or an in-group member (control group). We
show that receiving help from an out-group member elicits a classical
learning signal (prediction error) in the anterior insular cortex. This
signal in turn predicts a subsequent increase of empathy for a
different out-group member (generalization). The enhancement of
empathy-related insula responses by the neural prediction error
signal was mediated by an establishment of positive emotions
toward the out-group member. Finally, we show that surprisingly
few positive learning experiences are sufficient to increase
empathy. Our results specify the neural and psychological mech-
anisms through which learning interacts with empathy, and
thus provide a neurobiological account for the plasticity of
empathic reactions.
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Empathy deficits have detrimental social effects (1). When
they concern out-groups, these deficits are particularly per-

vasive (2) and expressed in brain regions that are related to
empathy processing (3–9), for example the anterior insular cor-
tex (AI) (7–9). Given the multicultural nature of our societies,
scholars from various disciplines have aimed to increase empathy
for out-groups. They report evidence that positive intergroup
contact, for example broadcasted in a radio drama (10) or ex-
perienced in an intergroup workshop (11), can increase empathy
for out-group members. However, the mechanisms underlying
such changes in empathy are poorly understood, which impedes
the development of principled interventions to foster empathy.
Based on the finding that positive intergroup contact is ben-

eficial, one can plausibly assume that increases in empathy to-
ward another person can be achieved via the establishment of
positive associations with that person (12). The mechanisms that
drive the establishment of positive associations have been heavily
studied in the domain of learning theory (13–18). A learning-
theoretical framework predicts that the establishment of positive
associations toward a person is most efficient, if the actions of
that person result in unexpected positive outcomes. This is be-
cause unexpected positive outcomes elicit “positive prediction
errors” (18–20), that is, a large difference between the learner’s
prior (low) expectation and the positivity of the actual outcome.
Based on this rationale, empathy for a person is learned if the
person’s actions elicit a prediction error signal (i.e., yields an
unexpected positive outcome) that drives the establishment of
positive associations. This increased positivity toward the other
person, in turn, should raise empathy (12).
These assumptions provide a clear and testable mechanism

how learning can increase empathy. However, so far little is known
about the interplay between classical learning mechanisms and
empathic processes, and how learning experiences shape empathy-
related processes in the human brain. Here, we use functional MRI

(fMRI), combined with formal learning theory and an intergroup
conflict paradigm, to investigate whether and how classical learning
mechanisms alter the empathy of males toward out-group members.

Rationale
Our study consisted of three parts, a preintervention part, a
learning intervention, and a postintervention part. To investigate
the interaction between learning and empathy, we exploited an
ecologically valid intergroup conflict in our country (Switzer-
land). During all three parts of the study, the Swiss participants
were paired with individuals of Swiss descent (in-group mem-
bers) and individuals of Balkan descent (out-group members).
The latter form a large minority in Switzerland whose presence is
often portrayed as problematic.
The learning intervention was based on the principles of negative

reinforcement, i.e., learning that arises from the absence of an
expected negative outcome. The participant expected to receive
painful shocks. However, he knew that one of the other individuals
in the scanner room could give up money to save him from pain
(Fig. 1). The name of the potential helper was revealed just before
the intervention started, and was a typical Balkan name in the ex-
perimental, and a typical Swiss name in the control group. Apart
from these differences in names, the intervention was identical in
both treatment groups.
To measure empathy, we assessed participants’ brain responses

while they were observing pain in the in-group and in the out-
group member, which is a well-established procedure for assessing
neural activation related to empathy for pain (9, 21). Pain stim-
ulation on the back of the in-group or out-group member’s hand
was indicated by visual cues (Methods). Importantly, before and
after the intervention, the in-group and the out-group members
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were represented by different individuals. This setup allowed us to
test whether and how the learning intervention affects the neural
response to in-group and out-group pain and whether its potential
impact generalizes to other individuals who were not present during
the intervention but were members of the same respective groups.
Given that expectations concerning out-group members are

typically more negative than those concerning in-group members
(22), receiving help from an out-group member is an unexpected
positive outcome that should elicit a strong positive prediction
error. If so, then the participants of the experimental group
should arguably use the prediction errors to establish positive
associations with their out-group helper. This increase in out-
group positivity should in turn increase empathy for the suffering
of out-group members (12), reflected by an increase of activation

in empathy-related brain regions such as the AI (23, 24). In
contrast, the participants of the control group are likely to expect
help from the in-group member. Thus, even though the control
group is saved from pain exactly as often as the experimental
group, we predicted less learning and no significant change in
empathy in the control condition.

Results
For the analyses of behavioral data, we focused on in-group vs.
out-group differences in impression ratings and emotion ratings.
Impression ratings (9) (Supporting Information) served as a ma-
nipulation check for the group manipulation and were collected
before scanning. Participants had significantly more positive
impressions of the in-group members, compared with the out-
group members [F(1,36) = 12.5, P = 0.001; experimental group,
t(1,19) = 2.6, P = 0.018; control group, t(1,17) = 2.5, P = 0.02].
Emotion ratings served to determine whether the learning in-
tervention had established positive out-group associations and
were collected at the end of each intervention trial. We used a
linear regression model to compare learning-related changes in
emotion ratings in the experimental vs. the control group. To
account for potential differences between early and late learning
stages (25, 26), we also compared the effects in the first (trials 1–10)
and the second half (trials 11–20) of the intervention. Emotions
toward the out-group member (experimental group) became more
positive than those toward the in-group member (control group), in
particular in the first half of the intervention [Treatment (experi-
mental/control group) ×Trial (trials 1–20) ×Half (first/second half),
T = 2.1, P = 0.03; Treatment × Trial interaction, first half, T =
−1.95, P = 0.05 (Fig. S1), second half, T = 1.29, P = 0.2 (Table S1)].
These results show that in the experimental group, the learning
intervention established positive associations toward the out-group
member, with particularly strong effects in the first half.
Next, we tested whether the establishment of positive out-

group associations in the experimental group had an impact on
empathy-related brain responses after the intervention com-
pared with before the intervention. Based on previous studies
(7–9), we assumed that potential learning effects on out-group
empathy should modulate the neural response in the AI. To test
this assumption, we analyzed our data in bilateral anatomical
masks of the insular cortex (27), using small-volume familywise
error (SV FWE) correction (see Tables S2–S7 for whole-brain
results). Before the intervention, participants’ brain responses in
the left AI were stronger when they saw the in-group member
compared with the out-group member in pain (experimental group,
T = 6.16, Z = 4.14, SV FWE-corrected; control group, T = 5.71,
Z = 3.9, SV FWE-corrected) (Table S2). Confirming previous
results (7–9), these findings show an out-group deficit in the AI
when comparing observed in-group to out-group pain.
To investigate whether the learning intervention counteracted

this out-group deficit, we calculated Group (in-group/out-group) ×
Time (preintervention/postintervention) interactions for each par-
ticipant and compared the average interaction contrasts between
the experimental and the control group, using a two-sample t test.
Note that this approach is testing a three-way interaction between
Group (in-group/out-group), Time (preintervention/postintervention),
and Treatment (experimental group/control group), while provid-
ing information about the direction of the effect at the same time
(experimental group greater than control group). The main result
was a significant intervention effect in bilateral AI, which was more
substantial in the left hemisphere (T = 4.72, Z = 4.13, SV FWE-
corrected) (Fig. 2A and Table S3).
In follow-up analyses, we tested for a Group (in-group/out-

group) × Time (preintervention/postintervention) interaction,
for the experimental and the control group separately. For the
experimental group, we again found activation in the left AI (T =
4.41, Z = 4.15, SV FWE-corrected). In contrast, in the control
group, the interaction revealed no significant activations, even at

Fig. 1. Example trial of the learning intervention. The arrow cue indicated
painful stimulation for the participant. Next, the options for the potential
helper (out-group member in the experimental group, in-group member in
the control group) were shown. By choosing the crossed-out lightning bolt
symbol, the potential helper indicated his decision to give up five Swiss
francs to cancel delivery of pain stimulation to the participant. By choosing
the intact lightning bolt symbol, he indicated his decision to keep the
money, which led to a painful shock for the participant at the end of the
trial. The potential helper’s decision was highlighted with a yellow square.
The participant rated how he felt about the potential helper on an emotion
rating scale. In this example, the potential helper’s decision canceled delivery
of the pain stimulation, indicated by a crossed-out lightning bolt at the end
of the trial. Otherwise, the intact lightning bolt was presented, and the
participant received a painful shock. To allow for successful positive condi-
tioning, the participant was saved from pain in 75% of all trials (15 out of
20 trials).
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a relaxed threshold of P < 0.05, uncorrected. Thus, the in-
tervention effect in AI cortex is based on pre-to-post increases in
AI activation in the experimental, but not in the control group
(Fig. 2B). Moreover, AI activation increased primarily for out-
group members in pain. This was evidenced by a significant
difference in the out-group post vs. pre contrast between the
experimental group and control group in left AI (T = 4.25, Z = 3.8,
SV FWE-corrected). There was no difference between the
groups with regard to the in-group conditions (in-group post vs.
pre), even at P < 0.05 uncorrected. Together, these results
demonstrate a significant intervention effect in left AI, which
reflects an increase in the experimental group participants’
neural response to the out-group member’s pain.
Importantly, the neural response in the left AI region, which

changed in response to the intervention, correlated with self-
reported empathy, that is, the individual ratings on the Empathic
Concern Scale (28), which we collected after scanning [r (38) = 0.39,
P = 0.015] (Fig. 2C). This finding confirms that the observed
neural effects in this region are related to empathy.
After establishing the success of our intervention, we investi-

gated the mechanisms underlying it. We predicted that positive
experiences, i.e., receiving help would elicit positive prediction
errors, in particular in the case of an out-group helper. We
computed the individual prediction errors based on a modified
version of a reinforcement learning model (19), which allowed us
to model learning as a function of individual prior expecta-
tions. The impression ratings reported above indicate that par-
ticipants entered the learning intervention with more positive
expectations toward the in-group compared with the out-group
member. To capture the individual variability in expectations,
our model included each participant’s impression ratings for the
out-group members (experimental group) and the in-group mem-
bers (control group) as starting predictions for subsequent pre-
diction error estimation (Methods). This approach extends classical
prediction error models in which learning starts from a starting
prediction of zero (the assumption being that participants have
neutral prior expectations).
First, we identified brain regions that track individual prediction

errors by regressing neural activity elicited by the decisions of the
potential helper (out-group member in the experimental group and
in-group member in the control group) against trial-by-trial esti-
mates of prediction errors. The results revealed activation in the AI
(Fig. 3A, red), which was more substantial in the right AI (T = 4.56,
Z = 4.01, SV FWE-corrected) (Table S4).
Second, we tested whether the individual prediction error

signal in right AI predicted the pre-to-post changes in empathy,
that is, the neural intervention effect shown in Fig. 2A. For each
individual, we extracted the prediction error-related beta values
from right AI and regressed them against the individual magnitude
of the intervention effect, as reflected by the Group (in-group/
out-group) × Time (preintervention/postintervention) interaction.
The results showed significant activation in left AI (T= 5.28,Z= 4.52,
SV FWE-corrected) (Fig. 3B, red, and Table S5), which over-
lapped with the observed intervention effect (Fig. 3B, orange;
Fig. 2A for comparison). This result shows that the change in
empathy after compared with before the intervention is linked to
the magnitude of the learning signal during the intervention.
Third, we assumed that the prediction error signal affects

empathy-related brain responses via the establishment of posi-
tive associations with the out-group member. Accordingly, the
direct impact of the prediction error signal on the intervention
effects should be mediated by the learning-related increase in

Fig. 2. Impact of the intervention on neural responses during observation
of pain in the in-group and out-group member in the experimental and
control group. (A) Significant activation in anterior insular cortex (AI), in-
dicating stronger intervention-related effects in the experimental group
compared with the control group (Table S3). (B) Average parameter esti-
mates for the contrast between observing in-group pain vs. out-group pain
in left AI. As a result of the intervention, empathy responses to out-group
pain compared with in-group pain were elevated in the experimental
group but remained biased for in-group pain in the control group.
(C) Positive correlation between the individual ratings on the Empathic Con-
cern Scale of the Interpersonal Reactivity Index (28) and the neural response in
left AI to in-group pain before the intervention in the experimental group
(black circles) and the control group (gray triangles). We chose the neural
response in the in-group condition before the intervention because this
measure is most likely to reflect participants’ trait empathy (i.e., their ten-
dency to empathize irrespective of the effects of the out-group manipula-
tion or the intervention). Note that the extracted data are independent of
the statistical analysis that defined the extraction region in left AI (i.e., the

Group × Time × Treatment interaction). For additional correlation analyses,
see Fig. S2. Error bars represent SEs. The imaging results are displayed at
FWE-corrected < 0.05 (SV in bilateral anatomical masks of the insular cortex).
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positivity toward the helper. We identified brain signals that
were related to a learning-related increase in positivity by cor-
relating the trial-by-trial emotion ratings with the neural re-
sponse when the helper’s decision was revealed. The results
showed significant activation in right AI (T = 4.7, Z = 4.1, SV
FWE-corrected) (Fig. 3A, yellow, and Table S6), which over-
lapped with the prediction error signal (Fig. 3A, orange).
Bootstrapped mediation analyses (29) were then conducted to

examine whether the neural change in positivity mediated the
effect of the neural prediction error signal on the empathy in-
tervention effect (Supporting Information). The results revealed a
significant indirect path from the prediction error signal, via the
neural increase in positivity, to the neural intervention effect
(B = 3.4; 95% confidence interval = [0.15–7.9]). Furthermore, after
controlling for the indirect path, the significant correlation be-
tween the prediction error signal and the intervention effect (c)
became nonsignificant (Fig. 3C, comparison between c and c′),
reflecting full mediation. Together, these results corroborate the
hypothesis that positive prediction errors drive pre-to-post changes
in empathy as mediated by the establishment of positive emotions.
In real life, the number of positive interactions with an out-

group member is likely to be small. It is therefore of practical
importance to investigate the minimal number of positive out-group
experiences that is necessary to predict increases in out-group em-
pathy. So far, we have shown that a successful intervention effect is
obtained after 15 positive out-group experiences, but it would be
useful to know whether a smaller number of positive learning
experiences with the out-group is sufficient to increase out-group
empathy. To explore which phase of the learning intervention is
most effective, we divided the entire period in quarters of equal

length (trials 1–5, 6–10, 11–15, 16–20) and extracted the respective
prediction error-related activity from right AI (ref. 30 for a similar
approach). We then tested the predictive relation between each of
these four intervention phases on the individual intervention effect
in left AI activation (Supporting Information). The results showed
that the initial five intervention trials alone accounted for 62.5% of
the variance in the intervention effect, which yielded a significant
model [F(1,19) = 11.5, P = 0.003]. The prediction error-related ac-
tivity during the initial five learning trials remained the best pre-
dictor even when all of the other predictors were added. In fact,
none of the other three predictors contributed significantly to
explaining individual variance in the intervention effect (Table 1)
(model 2, R2 change = 0; model 3, R2 change = 0.017; model 4,
R2 change = 0.023).
The initial five intervention trials contained an average of four

positive learning experiences (mean = 3.8, SD = 0.91). To fur-
ther specify the number of positive experiences required to
predict the individual intervention effects, we extracted the right
AI prediction error signal related to the first, second, third, and
fourth positive learning experience and assessed their relation-
ship with the individual intervention effect in separate regression
analyses. For each regression, the number of negative experi-
ences (i.e., when the participant did not receive help) that pre-
ceded the individual number of positive experiences was included as
a control variable. The results showed that the individual magnitude
of the intervention effect is predicted after only one to two positive
learning experiences with the out-group member [first positive expe-
rience, B = 3.04, T = 2.43, P[false discovery rate (FDR)-corrected] =
0.053; second positive experience, B = 4.4, T = 2.9, P(FDR-
corrected) = 0.038]. By contrast, the prediction error signals elicited
by three and four positive experiences no longer predicted the in-
tervention effect [three positive experiences, B = 2.6, T = 1.06,

Fig. 3. Neural responses correlating with trialwise prediction errors and
emotion ratings during the intervention and their impact on the neural in-
tervention effect, that is, the Group (in-group/out-group) × Time (pre-
intervention/postintervention) interaction. (A) Neural response in right AI
reflects prediction errors (red) and emotion ratings (yellow). The overlap
(orange) indicates that the same region in right AI encodes prediction errors
and increasing positive emotions (Tables S4 and S6). (B) Neural intervention
effect in left AI predicted by the individual prediction errors (red). The
predicted intervention effect overlaps with the actual intervention effect
(orange; see Fig. 2A for comparison; Table S5). (C) Results of the mediation
analysis. The indirect path from the prediction error signal to the neural
increase in positive emotions (A) to the intervention effect (B) was signifi-
cant. The direct impact of the prediction error on the intervention effect (c)
became nonsignificant after controlling for the indirect path (c′). This indi-
cates that the effect of the prediction errors on pre-to-post changes in
empathy is fully mediated by changes in emotions toward the helper.
Numbers indicate beta coefficients, and numbers in parentheses indicate SEs.
*P < 0.05, **P < 0.01. The imaging results are displayed at FWE-corrected <
0.05 (SV in bilateral anatomical masks of the insular cortex).

Table 1. Results of the hierarchical multiple-regression analysis
in the experimental group

Model
Predictors included

in the model B SE B β T value P value

1
PE-related activity

trials 1–5
7.03 2.07 0.63 3.4 0.003**

2
PE-related activity

trials 1–5
6.98 2.2 0.62 3.17 0.006**

PE-related activity
trials 6–10

0.23 2.45 0.02 0.09 0.93

3
PE-related activity

trials 1–5
6.09 2.6 0.54 2.35 0.032*

PE-related activity
trials 6–10

0.36 2.5 0.29 0.14 0.88

PE-related activity
trials 11–15

−2.3 3.4 −0.15 −0.67 0.51

4
PE-related activity

trials 1–5
5.46 2.75 0.48 1.98 0.06

PE-related activity
trials 6–10

−0.14 2.6 −0.01 −0.05 0.95

PE-related activity
trials 11–15

−1.87 3.47 −0.12 −0.54 0.59

PE-related activity
trials 16–20

2.42 3.08 0.18 0.78 0.44

β, standardized beta coefficient; B, unstandardized regression coefficient;
PE, prediction error; SE B, SE of the unstandardized regression coefficient.
The T and the P values indicate the impact of each predictor on explained
variance in the empathy intervention effect. *P < 0.05, **P < 0.01.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1514539112 Hein et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514539112/-/DCSupplemental/pnas.201514539SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514539112/-/DCSupplemental/pnas.201514539SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514539112/-/DCSupplemental/pnas.201514539SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514539112/-/DCSupplemental/pnas.201514539SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514539112/-/DCSupplemental/pnas.201514539SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514539112/-/DCSupplemental/pnas.201514539SI.pdf?targetid=nameddest=ST5
www.pnas.org/cgi/doi/10.1073/pnas.1514539112


P(FDR-corrected) = 0.4; four positive experiences, B = 0.36, T =
−0.12, P(FDR-corrected) = 0.9].

Discussion
Our findings show that empathy with an out-group member can
be learned and generalizes to other out-group individuals. This
learning is driven by classical prediction errors, whose impact on
empathy signals is mediated by an increase in positivity toward
the out-group member. Thus, our study provides a mechanistic
account of how positive contacts with the out-group can coun-
teract empathy deficits (10, 11).
The reductions in out-group deficits were predictable after

surprisingly few (two) positive experiences with an out-group
individual. Although the exact number of experiences should be
taken with a grain of salt, it is unlikely that these findings reflect
noise, for example induced by a specific constellation of helping
and nonhelping trials in the beginning of the intervention. First,
an analysis that was based on the full dataset (and therefore less
prone to noise) independently identified the strongest learning
effects in the first five trials (Table 1). Second, a detailed trial-by-
trial analysis revealed that the average ratio of helping to non-
helping trials within the first two trials was not different from
that ratio in later phases of the learning intervention, indicating
that volatility does not change in early compared with late phases
of the experiment (SI Results). Third, prediction error signals
during the first two intervention trials were similar, irrespective
of whether participants had experienced no or some nonhelping
trials (SI Results). Fourth, in the analysis that revealed a pre-
dictive relation between the AI activity between the first two
helping trials and subsequent empathy change, we controlled for
the number of nonhelping trials experienced by each subject.
So far, efficient learning based on a very few events has mainly

been shown in the domain of punishment. For example, in animals,
aversive reactions can be learned based on a single aversive event
(31, 32), and humans require only two to three negative experiences
(33). Going beyond this work, our findings show that people can
learn very efficiently from positive social experiences that prevent
them from harm, and that this type of learning has a strong impact
on complex internal states, such as empathy for a person in pain.
Thus, we provide insights into the efficiency of negative re-
inforcement learning in humans and its potential to serve as an
intervention to counteract deficits in out-group empathy.
Moreover, we found that the learning experience, which was

initiated by one representative of the out-group, resulted in an
increase in empathy for another representative of the out-group
who was in pain. The generalization of the learning effect is
important, because it shows the robustness of the learning in-
tervention and its potential relevance for society (1). The com-
plex experimental setup (including cover story and confederates)
did not allow for repeating the empathy measure for a second
time to test for long-term effects. However, it has been shown
that negative reinforcement can induce robust and long-lasting
learning effects, for example in therapeutic settings (34). In the
light of such results, it is conceivable that learning interventions
like ours might elicit lasting intervention effects.
Our results reveal how learning underpins the dynamics of

empathy. Unexpected positive outcomes resulting from help of
another person elicit prediction error signals, that is, signals that
resemble the ones known to drive reinforcement learning in the
monkey brain (17, 18). Our results indicate that basic learning
mechanisms are also used during complex social learning, which
is in line with previous studies (13, 35–38). Going further, our
findings show how classical learning mechanisms shape other-
regarding motivational states such as empathy.
We find that learning about another person and experiencing

empathy for a person in pain recruit a common neural structure,
namely, the AI cortex (see Supporting Information for a discussion
of lateralization). Different fields of research have independently

accumulated evidence for the important role of the AI in the pro-
cessing of empathy (23) and the encoding of prediction errors
during learning (15) (see Table S7 and SI Discussion for less
significant striatal effects). Our results integrate these two domains.
We show that, during learning, the AI is involved in updating
predictions about future outcomes as well as in implementing the
resulting emotional states. Interestingly, the updated information is
used to modulate the empathic reaction to another person. Based
on these results, an empathy-learning model would propose that
empathy-related processes in AI are altered by a person’s individual
learning history.
According to the empathy-learning model, empathic responses

are altered by any information that elicits prediction errors and
thereby results in an update of predictions about others. Thus, it
makes the clear prediction that empathy learning should be the
stronger, the more positive and unexpected the information revealed
about another person. These predictions of the empathy-learning
model provide a plausible mechanism for the effect of positive
intergroup contact (10, 11) and can inspire interventions to
foster empathy. On a conceptual level, our results uncover the
neural interplay between empathy and learning, and thus provide
a neurobiological mechanism for the profound plasticity of em-
pathic reactions, which has been widely documented (39, 40), but
so far not explained.

Methods
Participants. Forty healthy men (mean age, 22.7; SE, 0.41) participated in the
study. They were randomly assigned to the experimental and the control
group with no age difference between the groups [t(38) = −0.34, P = 0.73].
We chose a male instead of a gender-mixed participant group because it
allowed us to also choose male confederates and avoided the potential
complications of gender-mixed pairing of participants and confederates.
Moreover, testing the modulation of empathy in males is more conservative
than in females, because males are less likely to simulate others’ emotional
state on the neural level (41). Two datasets of the control group had to be
excluded because of technical problems during fMRI data collection. Par-
ticipants gave informed consent, and the study was approved by the Re-
search Ethics Committee of the Canton of Zurich.

Prescanning Procedure.We used a well-established priming procedure (42) to
induce the in-group/out-group manipulation and to activate the relevant
stereotype. Details about the prescanning procedure and the cover story are
provided in Supporting Information.

Scanning Procedure. During the “preintervention empathy session,” the
participant in the scanner observed the in-group or the out-group confed-
erate receive painful stimulation (18 trials each). Each trial started with an
arrow cue (500 ms), whose color indicated the recipient of the pain (in-
group/out-group member). After a fixation period (1,500 ms), a lightning
bolt was presented whose color matched the color of the arrow cue (1,000 ms).
Next, the color of the bolt changed to yellow, which indicated the de-
livery of the painful stimulation to the respective person (1,000 ms). After
a fixation period (1,000–3,000 ms), the next trial was presented. The colors
indicating the in-group and out-group condition were counterbalanced
across participants. The trials were presented in pseudorandomized order
(no more than two consecutive trials of the same condition). The “inter-
vention session” consisted of 20 trials, 15 trials in which the participant
received help from the other person, and 5 in which he did not receive
help and was thus subjected to pain. Helping and nonhelping trials were
presented in random order (for details, see Fig. 1). The “postintervention
session” was identical to the preintervention session, except that the
participant observed the painful stimulation of a new in-group and a new
out-group member. The participants (and confederates) were informed that
they would not meet after the study and had separate visual displays to
keep emotion ratings anonymous.

Prediction Error Model. Prediction errors were computed according to δt = α
(λt − Vt), where Vt corresponds to the value V predicted by all stimuli pre-
sented in trial t, λt corresponds to the value of the outcome in trial t, and α
corresponds to the learning rate. The learning rate determines how much
weight is given to recent experience as captured by the prediction error.
We assumed a learning rate of 0.3, which is most commonly reported in
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reinforcement learning paradigms (43). We found that the prediction error-
related effects were very similar for other learning rates (0.2 and 0.4). Ad-
ditional prediction error estimates based on the emotion ratings confirmed
the applied learning rate (SI Results). To capture individual variability in prior
expectations, V1 was equal to each participant’s average out-group score
(experimental group) or in-group score (control group) on the impression
scale. In contrast to our approach, traditional learning theory assumes no
prior expectations (V1 = 0), which is unlikely in our social setting. The
boundary outcome values were set according to the maximum (54 points)
and minimum (6 points) score of the impression scale. Accordingly, λt = 54 in
helping trials and λt = 6 in nonhelping trials.

Imaging Analyses. We conducted standard preprocessing, first- and second-
level analyses (Supporting Information). Second-level results were corrected

for multiple comparisons by using FWE correction within bilateral anatom-
ical masks of the entire insular cortex, as defined by the Automated Ana-
tomical Labeling atlas (27). For data extraction, we used the entire cluster
of the respective activations. The extracted beta values reflect the aver-
age activation of all voxels within the cluster. Details about the multiple-
regression analyses and the mediation analysis are provided in Supporting
Information.
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